Use of SPARK in a Resource Constrained Embedded System

Chad Loseby
Peter C. Chapin
Carl Brandon

Vermont Technical College
Outline

- Overall Problem
- Ice Buoy Requirements
- Our Solution Using SPARK/Ada
- Lessons Learned
- Future Work
Sea Ice Dynamics

• Desire to understand the dynamics of Arctic sea ice
 – Jun Yu (University of Vermont) has been developing mathematical models.
 – Used satellite obtained data of ice movement, deformation, and thickness.
 – Needs ground truth information.
 • Wind
 • Temperature

• VTC's role?
General Requirements

- Must tolerate spring conditions in arctic
 - Temperatures down to -20 C
 - Wind, rain, ice (not much snow)
 - Animals
- Must operate for ~3 months
- Will not be retrieved
 - Must transmit data to base via satellite link
Data Requirements

• Each sample contains...
 - GPS location
 - Wind speed
 - Relative wind direction
 - Temperature
 - 3-axis magnetometer reading
 • Together with location allows absolute orientation to be computed.

• Each data item separately time stamped
Software Requirements

• Sampling Frequency
 – Very slow... once every 30 minutes
 • Software performance not an issue
 • No significant real-time requirements

• Accuracy
 – Spacial resolution: 100s of feet
 – Temporal resolution: minutes
 – Data accuracy: 10-20%
Reliability

- Significant requirements
 - No access once deployed
 - No ability to upload fixes
 - Device entirely autonomous
 - Must recover from intermittent hardware failure

- Keep it simple
 - No on board processing of data
CubeSat Platform

- MSP430 based
 - Very low power
 - Adequate performance
 - Highly constrained
 - 60 KiB ROM
 - 2 KiB RAM
- Used for future projects
Wind Speed

Wind Direction

Magnetic Bearing

Temperature

CubeSat MSP430

Satellite Modem

Provides GPS Location and Time
Software Structure

- Initialize
- Sleep
- Gather Data
- Report Data

Data Buffers
Software

- SPARK/Ada
 - Problem...
 - No Ada compiler for CubeSat platform
 - Solution...
 - Compile Ada to C, then use C compiler
Tool Chain

- Ada Main
 - SPARK
 - Ada Magic
 - C Main
 - CrossWorks
 - MSP 430 Object Code
 - C Low Level

Information flow analysis
SPARK Provides

- More reliable software
- A way to simplify the run time system
 - Exception support not needed
 - Program_Error can't occur
 - Constraint_Error can be avoided
 - Dynamic memory allocation not needed
 - Lack of dynamic memory also makes evaluating memory consumption easier
- *We didn't use any run time system!*
C as Assembly Language

• Need C for low level access
 – Ada Magic compiler does not know the platform.
• Minimize the amount of C
 – C is error prone
 – C is not visible to SPARK
• We kept our C functions one or two lines.
package Timer
 --# own Hardware;
is
 procedure Initialize;
 --# global out Hardware;
 --# derives Hardware from ;
pragma Import(C, Initialize);

procedure Sleep;
 --# global in out Hardware;
 --# derives Hardware from Hardware
pragma Import(C, Sleep);
end Timer;
Hand Written C

- Platform specific code written in C
 - ... Interacts with target C compiler
 - ... Uses names compatible with Ada Magic generated code

```c
#include <msp430x14x.h>
#include <standard.h>

void Timer_Sleep(void)
{
    _BIS_SR(LPM3_bits);
}
```
Other Hardware

- A similar technique was used for
 - Interfacing to A/D converters
 - Interfacing to USARTs
 - Interfacing to debugging LEDs
- Interrupt service routines in C
 - But we only used one (for the timer)
 - Used to wake up the system.
 - USART I/O was done with polling!
Results

- It is possible to compile Ada onto a very small device using C as an intermediate language.

- **SPARK helps by enabling massive run time simplifications.**

- It is possible to build such a system in an educational setting.
Future Work

• Finish prototype
 – Still need to complete enclosure
 – Still need to complete software
 • Data formatting
 • Verify freedom from run time errors
 • Evaluate memory consumption
 • Prove buffers can be drained
 – Plan to do live tests this winter in Vermont

• Deploy in March 2011?
QUESTIONS?

(Thanks to AdaCore, Praxis, Rowley Associates, SofCheck)