1 Introduction

This document describes a voting protocol. Many such protocols exist with slightly different properties. The protocol here is simple enough to be reasonably understandable while at the same time effective enough to provide useful guarantees.

The principals are $V$, the voter, and $C$ the Central Tabulation Facility. $C$ is an official office charged with tabulating votes and otherwise coordinating the election. $C$ has a public/private key pair $\kappa_C^p$ and $\kappa_C^r$. However the voter(s) do not require public/private keys themselves.

The protocol is intended to have the following properties. The primary property is emphasized.

- $V$ is able to cast a vote with no possibility of anyone (particularly $C$) associating $V$’s vote with $V$.
- $V$ is unable to cast multiple votes.
- Only legitimate voters can vote.

The protocol described here also has the property that it allows $V$ to verify his/her vote was recorded. This protocol has some weaknesses, however. In particular $C$ can cheat and generate fake votes without being detected. In addition if $V$ discovers that $C$ modified his/her vote, $V$ can’t do anything about it (at least not without publically claiming the vote).

This protocol makes use of blind signatures. This subprotocol works as follows: Alice mathematically modifies her document in a special way that mixes in a random blinding factor known only to her. The result of this operation is indistinguishable from a random number. Bob then digitally signs the blinded document. Bob is not able to see the original document. Alice removes the blinding factor resulting in the original document properly signed by Bob. In effect, Bob has signed a document he can’t read.

There are several blinding algorithms available but they have to be matched with the digital signature algorithm. In effect the blinding and signing algorithms have to commute. In what follows I will use the notation $B(f, m)$ to
represent the blinded value of $m$ using blinding factor $f$. I will use the notation $U(f, m)$ to represent the result of unblinding $m$ with factor $f$. We have

$$S(\kappa^{(r)}, B(f, m)) = B(f, S(\kappa^{(r)}, m))$$

after unblinding both sides of the equation above we have

$$U(f, S(\kappa^{(r)}, B(f, m))) = S(\kappa^{(r)}, m)$$

Note that $m$ is unreadable given $B(f, m)$ without $f$. In this respect blinding is similar to encryption except that, in general, encryption algorithms don’t commute with signature algorithms.

2 Protocol

The protocol proceeds as follows:

1. $V$ prepares a set of message pairs $\mathcal{M}$ where each member of the set $m_i$ consists of two messages $(Y \parallel ID_i, N \parallel ID_i)$. Here $Y$ represents a “Yes” vote and $N$ represents a “No” vote. The ID number is an integer randomly chosen by $V$ that is large enough so the probability of anyone else choosing the same integer is negligible. Each message pair $m_i$ has a different ID number but the two messages inside the pair have the same ID number.

   The size of this set is chosen by $C$. However it might contain, for example, 100 message pairs.

2. $V$ blinds each message in $\mathcal{M}$ with separate blinding factors. For example the pair $m_i$ might become $(B(f_i, Y \parallel ID_i), B(f_i, N \parallel ID_i))$. It is important that different blinding factors be used with each $m_i$.

3. $V \rightarrow \mathcal{M} \rightarrow C$. The voter sends all the blinded message pairs to the CTF, authenticating to the CTF in the process.

4. $C$ verifies that $V$ is a legitimate voter who has not yet voted.

5. $C$ chooses one message pair at random from $\mathcal{M}$ to set aside. For all other message pairs $C$ requests the blinding factors from $V$.

6. $V$ complies by sending all requested blinding factors to $C$.

7. $C$ unblinds all but the one message pair previously set aside (and for which $C$ doesn’t have the blinding factor anyway) and verifies their correct format. If an invalid message pair is found (for example a pair with different ID numbers on each message) $V$ is penalized to a sufficient degree to make attempts at cheating unprofitable.
8. $C$ signs the blinded messages that were previously set aside. Returning
the following to $V$

$$(S(\kappa_c^{(r)}, B(f_i, Y \parallel ID_i)), S(\kappa_c^{(r)}, B(f_i, N \parallel ID_i)))$$

9. $V$ unblinds the two messages in the pair. The result are two votes each
signed by $C$. $V$ chooses the desired vote and then sends $S(\kappa_c^{(r)}, v \parallel ID)$ to
$C$ anonymously. Here $v$ is $V$’s vote and ID is the associated ID number
on that vote.

10. $C$ verifies the signature on the received vote, checks that the ID has never
been used before, tallies the vote, and publishes the pair $(v, ID)$ on a public
web site.

11. $V$ searches the web site for her ID to verify that her vote was recorded
properly.

3 Informal Analysis