Computer Security

Vermont Technical College
Spring 2014
Peter C. Chapin
What is Computer Security?

- A computer system is secure if it behaves in the expected way.
 - Unexpected behavior includes
 - Revealing data to unauthorized users.
 - Letting unauthorized users modify data.
 - Ordinary software faults.
 - Hardware failure.
 - Very broad definition! It overlaps software engineering and system administration.
What is Computer Security?

• A computer system is secure if it behaves as expected when attacked by an unauthorized intelligence.
 – Focuses on the issue of malicious attack (bad guy)
 – Random errors are not a security problem unless they introduce an exploitable vulnerability
 – This definition is more intuitive, but it overlooks practical reality: Data loss is data loss no matter what causes it.
Security, Engineering, Administration

- Security + Engineering
 - Design
 - Reliability
- Security + Admin
 - Software configuration
 - Contingency planning
- Engineering + Admin
 - Administrative tools
 - Hardware support
Security Layers

- **Configuration & Use**: Is the system configured and used properly? (Administration)
- **Implementation**: Is the system built correctly? (Engineering)
- **Design & Specification**: Is the system secure in principle? (Security theory)
Complexity is Bad for Security

Complex systems are hard to use.

Complex systems are hard to build.

Complex systems are hard to understand.
Examples of Excessive* Complexity

• NTFS (Windows file system) permissions
 – Many complex interacting options
• IPsec (IP Security Protocol)
 – Too many ways of doing essentially the same thing. Too many interacting options.
• Linux `iptables` configuration
 – Like many firewalls, provides a large number of features. How can administrator be sure it’s ok?

* Complexity is “excessive” if the corresponding capability is either unnecessary OR can be obtained in another, simpler way.
Notes on Terminology

• “Insecure” vs “Unsecure” vs “Unsecured”
 – Insecure is an emotional state. Unsecure is not a word. Unsecured implies no security activated.

• “Hacker”
 – A hacker used to be a good guy. Then hackers became bad. Now they are good again. Don’t use the term, the meaning is ambiguous.

• “Adversary” vs “Attacker”
 – Adversary is best since it is more neutral.
Alice and Bob

• Security community has traditionally used “Alice” and “Bob” instead of A and B in examples. I will continue this tradition.
Security Services

• Service is a type of security, not a server
• Q: “Is your system secure?”
 – Wrong answer: “Yes” (or “No”)
 – Right answer: “Secure in what sense?”
• Security is **not** a Boolean attribute.
 – Many possible security services exist.
 – A system might be strong in some ways, weak in others.
 – *Match the security services you use to your needs!*
“Big Two” Security Services

• **Confidentiality**
 – The property of blocking unauthorized users from *reading* data. (Common tool: Encryption)

• **Data Integrity**
 – The property of blocking unauthorized users from *writing* data. (Common tool: Digital signatures)

These two services are *duals* of one another. They have an intimate theoretical relationship that we will explore as the course progresses.
Other Security Services

• Authentication
 – The ability to determine the identity of a principal

• Anti-Replay
 – The ability to detect when an old transaction is inappropriately resubmitted for processing

• Sequence Control
 – The ability to detect when the ordering of events has been rearranged

• Availability
 – The ability to continue working despite attempts to shut you down
Example

• *Alice sends Bob packets over the network.* Alice encrypts and signs the packets so...
 – Confidentiality, data integrity, and authentication are provided.

• BUT...
 – Without *sequence control* an attacker could rearrange the packets
 – Without *anti-replay* an attacker could send the packets again
Attacker Models

• Passive
 – Attacker only able to look at data, but not touch it. “Observe, but do not interfere.”

• Active
 – Attacker able to modify, insert, remove, reorder data. “Go ahead and interfere.”

It’s important to use the right model when analyzing a security system. Be **realistic**. No security is sufficient against an attacker with god-like power!
Summary

- A computer system is secure if it behaves in the expected way.
- Security concerns overlap with those from engineering and system administration.
- Security must be applied at all levels: Design, implementation and deployment.
- Complexity is bad for security. Unfortunately feature-hungry users gravitate toward complex systems.
- Security services define the kinds of security one might be interested in having.
- Before analyzing security, understand the assumed capabilities of the attacker.