IPv6 Details

CIS-3152, Spring 2013
Peter C. Chapin
General Goals

• Simplified header (relative to IPv4)
 • Routers should not have to compute a checksum.
 – In IPv4 there is a header checksum that needs recomputation at each step.
 – Underlying link protocol, or upper level transport application protocol and do error detection.
 • Many features relegated to “extension headers.”
 – Application only uses extensions that it needs.
 – Keeps header size reasonable.

• No (on network) fragmentation allowed.
 • Fragmentation in IPv4 has proved problematic.
IPv6 header is (nominally) 40 bytes.

```
+---------------------------------+-----------------+-------------+
| Version | Traffic Class | Flow Label  |
+---------------------------------+-----------------+-------------+
| Payload Length                  | Next Header     | Hop Limit   |
+---------------------------------+-----------------+-------------+
                                        | Source Address  |
+---------------------------------+-----------------+-------------+
                                        | Destination Address |
+---------------------------------+-----------------+-------------+
```
Hop Limit

• “Hop limit” field is similar to IPv4's “time to live.”
 • Number of routers the packet can pass through.
 - Limits packets from circulating indefinitely in an erroneous routing loop.
 • Field 8 bits so maximum number of hops just 255.
 - Is this enough?
 - IPv6 networks can contain a huge number of nodes.

• Defn: The “diameter” of the network is the maximum number of hops between any pair of nodes.
Diameter of the Internet?

- Nobody knows for sure.
- However... node count grows exponentially with the diameter.
 - Thus a large hop count field may be unnecessary.
 - This was a debated topic in the design of IPv6.
Flows

- Flows are an experimental feature (RFC-3697)
 - Not widely implemented (as far as I know)
 - Stream of packets designated as a “flow” by the source.
 - Often associated with a transport connection.
 - Defined by (source addr, dest addr, flow label)
 - Source must use flow label of zero by default.
 - Applications and transport protocols MUST have a means for setting the flow label.
- Intended to be used for QoS applications.
Extension Headers

- Various kinds are defined
 - Hop-by-hop (processed by routers).
 - Destination options (for all destinations listed in the routing header)
 - Routing (requested path through the network)
 - Fragment (source node *can* fragment packets)
 - Authentication (AH... part of IPsec)
 - Encapsulation Security Payload (ESP... part of IPsec)
 - Destination options (only for final destination)
This design allows for easy future expansion. New extension headers can be defined at any time.
Extension Header Notes

- A few rules of interest... (see RFC-2460)
 - Headers only processed by destination
 - Except for “hop-by-hop options”... which must be first.
 - So routers don't have to dig around looking for it!
 - Headers must be processed in order given.
 - Some extensions may prohibit further processing.
 - Unrecognized header causes packet to be discarded.
 - An ICMPv6 message returned to sender.
 - “Don't process packets you don't fully understand.”
Option Headers Format

- Option Headers have a generic format.
 - Contain a variable number of “type-length-value” (TLV) encoded options.
 - New options can be defined later.

Options must be processed in order
Option Type Field

- Option type field has additional structure.

Flag: Can option data change in route?

Actual type field just five bits.

How to process if unrecognized:
0 => Skip option.
1 => Discard packet.
2 => Discard packet and send ICMPv6.
3 => Like (2) for non multi-cast.
Neighbor Discovery Protocol

• Used for... (see RFC-2461)
 • Finding link layer addresses that correspond to an IPv6 address (like IPv4's ARP).
 • Finding routers on a given link.
 • Finding the link's prefix(es) (global addresses)
 • Link parameters

• ND thus combines the functionality of several separate IPv4 protocols.
Special ND Addresses

• Some ND functions are done before node has a normal address.
 - FF02::1 Link scope all nodes multi-cast (used to talk with all nodes on a particular link).
 - FF02::2 Link scope all routers multi-cast (used to talk with all routers on a particular link).
• Solicited node multi-cast (RFC-2373)
 - Suppose node addr = 4037::1:800:200E:8C6C
 - Solicited node addr = FF02::1:FF0E:8C6C
 - Prefix FF02::1:FF00:0000/104
 - Lower 24 bits from address above.
ND (ICMP) Message Types

- Router Solicitation
- Router Advertisement
 - Contains list of link prefixes
 - Options: hop limit, link MTU, etc, hosts should use.
- Neighbor Solicitation
 - Multi-cast to the solicited node address.
- Neighbor Advertisement
 - Unicast back to the requesting node.
- Redirect
Jumbograms

- Certain links support MTU values greater than 64 KiB.
- Long fat pipes...
 - 10,000 mile connection at 80% speed of light, 10 Gbps.
 - ~67 ms transit time => ~670 million bits on the wire.
 - ~56,000 traditional ethernet frames!
- Using large packets reduces processing overhead
- Jumbograms implemented as a hop-by-hop option with a 32 bit payload length field.
 - No support needed for “normal” links.
- TCP and UDP need modification for this!